The strength of choiceless patterns of singular and weakly compact cardinals

نویسندگان

  • Daniel Busche
  • Ralf Schindler
چکیده

We extend the core model induction technique to a choiceless context, and we exploit it to show that each one of the following two hypotheses individually implies that AD, the Axiom of Determinacy, holds in the L(R) of a generic extension of HOD: (a) ZF + every uncountable cardinal is singular, and (b) ZF + every infinite successor cardinal is weakly compact and every uncountable limit cardinal is singular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns

We provide upper and lower bounds in consistency strength for the theories “ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω” and “ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are re...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

Violating the Singular Cardinals Hypothesis Without

We extend a transitive model V of ZFC +GCH cardinal preservingly to a model N of ZF + “GCH holds below אω” + “there is a surjection from the power set of אω onto λ” where λ is an arbitrarily high fixed cardinal in V . The construction can roughly be described as follows: add אn+1 many Cohen subsets of אn+1 for every n < ω , and adjoin λ many subsets of אω which are unions of ω-sequences of thos...

متن کامل

A remark on the tree property in a choiceless context

We show that the consistency of the theory “ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from the consistency of a proper class of supercompact cardinals. This extends earlier results due to the author showing that the consistency of the theory “ZF + ¬ACω + Every successor cardinal is regular + E...

متن کامل

On successors of Jónsson cardinals

We show that, like singular cardinals, and weakly compact cardinals, Jensen's core model K for measures of order zero 4] calculates correctly the successors of JJ onsson cardinals, assuming O Sword does not exist. Namely, if is a JJ onsson cardinal then + = +K , provided that there is no non-trivial elementary embedding j : K ?! K. There are a number of related results in ZF C concerning P() in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2009